LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034			
	B.Sc. DEGREE EXAMINATION – STATISTICS		
£ -	FOURTH SEMESTER – APRIL 2023		
LUCE	UST 4501 - ESTIMATION THEORY		
Da	te: 02-05-2023 Dept. No. Max · 100 Marks		
Da Tir	ne: 09:00 AM - 12:00 NOON		
	SECTION A - K1 (CO1)		
	Answer ALL the Questions(10 x 1 = 10)		
1.	Define the following		
a)	Statistic		
b)	Consistent estimator		
c)	Completeness		
d)	Bayesian estimate		
e)	Confidence interval		
2.	Fill in the blanks		
a)	The expected value of difference between the true value of the parameter and estimator is called		
b)	Factorization theorem is used to findstatistic		
c)	Lehmann-Scheffe theorem is used to obtain uniformly minimum unbiased estimator.		
d)	The invariance property is possessed by the maximum estimator.		
e)	The Bayes' estimator is when the loss function is absolute error		
	SECTION A - K2 (CO1)		
	Answer ALL the Questions(10 x 1 =		
	10)		
3.	Match the following		
a)	Efficient estimator $\{\psi(\theta)\}^2 / I_X(\theta)$		
b)	Incomplete family Posterior distribution		
c)	C-R lower bound Minimum chi-square		
d)	Method of estimation Ratio of variances		
e)	Bayes' estimation $\{N(0,\sigma^2), \sigma^2 > 0\}$		
4.			
a)	If X_1, X_2 is a random sample of size 2 from B(1, θ), $0 < \theta < 1$, then X_1+X_2 is sufficient for θ .		
D)	If a minimum variance bound estimator exists then it is essentially unique.		
c)	Maximum likelihood estimator is unique.		
a)	An estimator which is asymptotically unbiased should be necessarily unbiased.		
<i>e</i>)	SECTION P K3 (CO2)		
	Answer any TWO of the following $(2 \times 10 = 20)$		
5	State and prove Neyman-Fisher Factorization theorem		
6.	Show that the n th order statistic is consistent for θ if $X_1, X_2,, X_n$ is a random sample from U(0, θ)		
7	$, \forall \geq 0.$ Let V V be a rendem semple of size π from $f(w, 0) = conf. (w, 0)$ $ w \geq 0$		
1.	Let $\Lambda_1, \Lambda_2, \dots, \Lambda_n$ be a random sample of size n from $I(x; \theta) = \exp[-(x-\theta)]$, $x \ge \theta$,		

	0, otherwise. Find UMVUE of θ .	
8.	Write the procedure for constructing the confidence interval for ratio of variances.	
	SECTION C – K4 (CO3)	
	Answer any TWO of the following(2 x 10 = 20)	
9.	State and prove the following: (i)Rao-Blackwell theorem and (ii)Lehmann-Scheffe theorem.	
10.	Explain the following methods of estimation:	
	(i)Maximum Likelihood (ii) Moments (iii)Minimum chi-square and (iv)Least squares.	
	(3+3+2+2).	
11.	Derive the Cramer – Rao inequality.	
12.	Let $X_1, X_2,, X_n$ be a random sample of size n from N(θ , 1), $\theta \in \mathbb{R}$. Find the sufficient statistic	
	and examine if it is complete.	
$\frac{\text{SECTION D} - \text{KS}(\text{CO4})}{(1 \times 20 - 20)}$		
13	(a)State and prove Chapman Robbins' inequality	
15.	(a) but $\mathbf{Y} = \mathbf{Y}$ is a second second by $\mathbf{N}(\mathbf{u}, -2)$. Fig.1 the set \mathbf{G} is interval of	
	(b) Let $X_1, X_2,, X_n$ be a random sample from N(μ, σ). Find the sufficient statistic for μ when	
	σ^2 is known and σ^2 when μ is known. (10+10)	
14.	(a) Establish the invariance property of M.L.E.	
	(b)Let $X_1, X_2,, X_n$ be a random sample from $N(\theta, 1)$, $\theta \in \mathbb{R}$. Find Fisher's information	
	contained in the sample.	
	(c) Explain Loss and Risk functions. (5+10+5)	
	SECTION E – K6 (CO5)	
	Answer any ONE of the following $(1 \times 20 = 20)$	
15.	(a)Let $X_1, X_2,, X_n$ be a random sample from B(1, θ), $0 < \theta < 1$ and θ follows beta	
	distribution of first kind with parameters α and β . Find Bayes' estimator of θ with	
	respect to squared error loss function.	
	(b)Narrate the construction of confidence interval for difference between means	
	if the sampling is done from two normal populations	
	in the sampling is done from two normal populations.	
16	(10+10)	
10.	(a) Establish with an example that M.L.E. is not consistent.	
	(b) Prove with an example that M.L.E. is not sufficient.	
	(14+6)	
	\$\$\$\$\$\$	